
Formalism Challenges of the Cougaar Model
Driven Architecture

Shawn A. Bohnerl, Boby George1, Denis GraEaninl, and Michael G. Hinchey'

Department of Computer Science
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

(sbolmer , boby , gracanin}(pvt. edu

Michael.G.Hincheyhasa.gov
NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Abstract. The Cognitive Agent Architecture (Cougaar) is one of the
most sophisticated distributed agent architectures developed today. As
part of its research and evolution, Cougaar is being studied for applica-
tion to large, logistics-based applications for the Department of Defense
(DoD). Anticipiting future complex applications of Cougaar, we are in-
vestigating the Model Driven Architecture (MDA) approach to under-
stand how effective i t would be for increasing productivity in Cougar-
based development efforts. Recognizing the sophistication of the Cougaar
development environment and the limitations of transformation tech-
nologies for agents, we have systematically developed an approach that
combines component assembly in the large and transformation in the
small. This paper describes some of the key elements that went into the
Cougaar Model Driven Architecture approach and the characteristics
that drove the approach.

1 introduction

Software development can be thought of as the evolution of abstract require-
ments into a concrete software system. Starting with requirements that must be
refined and elaborated, the system's evolution is achieved through a successive
series of transformations. For non-trivial systems, this can be complex, time con-
suming, and prone to errors as software engineers work together t o develop the
requisite components, assemble them, and verify that they meet specifications.
Model Driven Architecture (MDA), also known as Model Driven Development,
represents an emerging approach for organizing this evolution and its resulting
artifacts. Through a successive series of computational independent, platform
independent and platform specific model transformations, MDA facilities gener-
ation of software systems.

W i t h the reientiess advancerueni uf tediii~hg-j-, co;;;i;!ctj. z d i..tegr.+ion
issues often dominate modern computing. To respond t o the sheer volume of
software and consequential complexity, the software community has increasingly
embraced architecture principles. Software architecture provides a framework

-

t o understand dependencies that exist between the various components, con-
nections, and configurations reflected in the requirements. Some situations lend
themselves to what is called an agent-based architecture.

As software grows in complexity and autonomy, manifold dependencies be-
tween critical elements of software increasingly drive many software architec-
tures. Agent-based software systems address this complexity particularly where
components may have autonomous properties (i.e., complex information and
task-intensive situations) and require mechanisms to control these and other
properties in a predictable way. The task orientation coupled with intelligent
agents provides a strategic and holistic environment for designing large and
complex computer-based systems.

This research concentrates on understanding and applying the MDA ap-
proach in an Agent-Based Architecture - specifically, Cougaar. The goal is to
explore ways t o use MDA to facilitate domain and software engineering staff
developing Cougaar Applications, t o move up and program at the higher level,
the domain level. We investigate how to compose Cougaar components into a
General Cougaar Application Model (GCAM) and develop a General Domain
Application Model (GDAM) for specifying and generating software applications.
While the scope of this research focuses on the establishment of the GCAM and
GDAM, it also provides example recipes for transforming the models into rele-
vant software artifacts such as requirements, design, code, and test documents.

1.1 Agent Based Systems

While there are several definitions for software agents [1],we simply define an
agent its a software entity that perceives its environment and responds through
action(s) or tasks to fulfill a designed purpose. This broad definition covers a wide
range of software agents, where agent types are characterized by properties, such
as autonomous, interactive, adaptive, sociable, cooperative, competitive, proac-
tive, intelligent, and mobile. By combining these properties in different ways,
researchers have defined different agent types and, depending on the criteria,
organized these agent types into taxonomies.

An “agent system is a platform on which agents are deployed”[2]. Software
agent systems, also known as frameworks, need not be large systems, requir-
ing enterprise-class machines to execute. Some agent systems are characterized
by a large footprint and require considerable resources to execute. Others are
lightweight and can execute in an embedded architecture.

A general agent platform architecture consists of three major components:
a platform manager, an advertisement registry and a set of agents. Key char-
acteristics of this general agent platform are that (a) there is some mechanism
by which agents are managed (i.e., created, deleted, suspended, resumed, etc.),
registered and also discovered by other agents; and (b) there is a communica-
tion mechanism. The platform manager is responsible for managing the agents,
handling operations such as the creation, deletion, suspension and resumption
of agents. The advertisement registry contains descriptions of the agents in the
system and facilitates discovery of those agents. Implied in this architecture is

that agents can communicate with each other, with the platform manager and
with the advertisement registry.

Some interesting examples software agent systems include Grasshopper [3],
JACK [4], Cougaar [5], and JADE [SI. There are also several more agent sys-
tems that are compliant with Foundation for Intelligent Physical Agents (FIPA)
specifications [7]-

1.2 Cougaar

The Co,pitive Agent Architecture (Cougaar) is an open source, distributed agent
architecture [8] resulting from over eight years of research and development,
and over $150 million investment by the Defense Advanced Research Projects
Agency (DARPA) under the Advanced Logistics Program (ALP) and the Ul-
tra*Log program [9]. Cougaar is a Java-based architecture for the construction
of large-scale distributed agent-based applications characterized by hierarchical
task decompositions. ALP demonstrated the feasibility of using advanced agent-
based technology to carryout rapid, large scale, distributed logistics planning.
Ultra*Log is developing information technologies to e+ance the survivability of
these distributed agent-based systems operating in extremely chaotic environ-
ments. Over the last four years, fault tolerance, scalability and security have
become the focus of evolving this platform for more robust applications.

The Cougaar environment enables developers to build intelligent applications
that can recognize and accept high level tasking, determine suitable processes
and activities, and allocate appropriate resources to complete the tasking. n o m
an information systems workfiow perspective, Cougaar agents can accomplish
various tasks based on the functional business processes with which they are

Cougaax agents are organized into a society that collectively solve(s) prob-
lem(s). A society can encompass one or more communities of agents that share
functional purpose or organizational commonality. A Cougaar node refers to a
single Java Virtual Machine (JVM) running on a single server that contains one
or more agents. A society may be deployed across several nodes. Agents on the
same node may compete for resources including CPU, the memory pool, disk
space, and network bandwidth.

Figure 1 illustrates the Cougaar agent structure consisting primarily of a
blackboard apd, a set of plugins and logic providers that are referentially uncou-
pled. The blackboard is a container of objects that adheres to publish/subscribe
semantics. Plug-ins provide business logic. Logic providers translate both incom-
ing and outgoing messages. When an agent receives a message, it publishes it
to the blackboard where a logic provider observes its addition and transforms it
into an object that plugins work on. Plugins publish/remove objects, or publish
changes to existing objects. Plugins create subscriptions t o get notified when
objects of its interest are added, removed or changed in the 'oiackboard.

Agents collaborate with other agents, however they do not send messages
directly t o each other. Instead, a task is created. Each task creates an "infor-
mation channel" flowing through the society, for requirements passing down and

configured.

Fig. 1. Cougaar Agent Structure [8]

responses going back. In order to send an object or resource, to another agent,
the developer must first associate the object or resource with the task. Cougaar
uses the concept of asset to represent objects or resources used by task. Only
instances of the Asset class can be associated with the task (i.e., all multi-agent
objects must be defined as assets).

Once the task is created, then the task to be allocated must be located. This
is typically accomplished by creating a subscription that examines the roles
or property groups of organizations in the local blackboard. Once the proper
organization is found, the task containing the object to be sent to the other agent
is allocated t o that organization by creating an allocation and publishing it to
the blackboard. The Cougaar communication infrastructure then ensures that
the task is sent. to the specified organization and the specified agents blackboard.

A relationship between two agents which can either be a superior/subordinate
or customer/provider relationship. The superior/subordinate relationship sup-
ports long-standing transactions where a superior gives high-level tasks to the
subordinate, which then performs the task and then report aggregate and trend
information back to the superior on a periodic basis. Cougaar support dynamic
re-planning and execution monitoring, based on these aggregateltrend infor-
mation. A customer/provider relationship on the other hand is for task-order
services between agents on a peer-to-peer basic and may result in large scale
discrete data flows between the agents.

1.3 Model Driven Architecture

In some sense, MDA is a natural progression from previous advances in com-
puter science. Using models in the development of a system has been practiced
for decades, and even for centuries in other engineering disciplines (e.g., Building
Architecture). Perhaps the most telling transition in mindset is how modeling
in MDA takes a model (typically an abstraction of a reality) and creates an exe-
cutable form through a series of predictable transformations. Since the computer
uses a conceptual medium developed by a software engineer (i.e., a model or se-
ries of models), transforms now make abstractions of the real world accessible

and even executable on a computer. In this sense, models are no longer simply
an aid in understanding - the model can now become something much more
concrete.

Like other engineering disciplines, software architecture helps us deal with
the inherent complexities of building today's software systems. Systematically,
separating concerns, formalizing the interfaces through standards and the like,
provides better leverage for developing and evolving the software we employ.
Software architecture - the structure or structures of the system, which encom-
pass software components, their externally visible properties, and the relation-
ships among them[lO] - addresses the aforementioned growing complexity by
providing structure for thinking about and communicating key relationships be-
tween components, whether they are commercial-off-the-shelf software (COTS),
middleware, or custom developed.

MDA endeavors to achieve high portability, interoperability, and reusability
through architectural separation of concerns. In some respects, MDA is an ad-
vanced perspective on well-known essential systems development concepts prac-
ticed over the years (albeit frequently practiced poorly). MDA hinges on the
long-established concept of separating the operational specification of a system
from the details of how that system implements those capabilities on its respec-
tive platform(s). That is, separate the logical operational models (external view)
from the physical design for the platform implementation.

Starting with an often abstract computation independent model (CIM) such
as a business process workflow or functional description, the platform indepen-
dent model (PIM) is derived through elaborations and mappings between the
original concepts and the PIM renderings. Once the PIM is sufficiently refined
and stable, further platform specific models (PSM) are derived through a se-
ries of elaborations and rehements into a form that can be transformed into a
completed operationd system.

The CIM layer is where vernacular specific to the problem domain is defined,
where constraints are placed on the solution, and where specific requirements
reside. Artifacts in the CIM layer focus largely on the system requirements and
their environment to provide appropriate vocabulary and context (e.g., domain
models, use case models, conceptual classes). The CIM layer contains no process-
ing or implementation details. Instead, it conveys non-functional requirements
such as budgetary constraints, deployment constraints, and performance con-
straints as well as functional constraints.

The PIM provides the architecture, the execution plan, but not the execution
of the plan in a tangible form. Beyond high level services, the problem domain
itself must be modeled from a processing perspective. The PIM is where the
logical components of the system, their behaviors, and interactions are modeled.

cx..cyud cr
logical perspective. Structural and semantic information on the types of compo-
nents and their interactions (e.g., design classes, interaction and state diagrams)
are rendered in UML, the defacto modeling language for MDA.

pc"i iil iifais fUiG vn mo&Efig =-h& tLe sj-3&arr &QiiZ do $-om

6

Mapping from the PIM to the PSM, is a critical element of the MDA a p
proach. The mappings from platform independent representations to those that
implement the features or functions directly in the platform specific technolo-
gies are the delineation point where there is considerable leverage in MDA. This
mapping allows an orderly transition from one platform to another. But the
utility does not stop there. Like the PIM, there is the opportunity to have lay-
ers within the PSM to produce intermediatetransformations on the way to the
executable system. These models can range from detailed behavior models to
physical source code used in the construction of the system.

Direct PIM to PSM mappings are only possible in relatively simple situa-
tions today. Today’s modeling languages are not sufficient to express all possible
processing mechanisms. While UML 2.0 is attempting to address this limitation,
it’s too early to measure its impact. Therefore, in this research effort, we have
attempted to glean the the benefits of the MDA approach while avoiding, to the
extent possible, its inherent limitations.

The MDA approach specifies a system independently of the platform that
supports it, specifies the platform(s), chooses platforms for the system, and
transforms the system specification into those for particular platforms. While
this approach is still evolving, we are encouraged by its progress and skeptical of
some claims made by proponents. Therefore, we have adopted an approach that
incorporates the more stable concepts supported by tool technology and delayed
others that are still in question as far as implementation potential in the next
year.

2 CougaG Model Driven Architecture

The objective of this research project is to improve the productivity of Cougaar
system developers by applying Object Management Groups MDA approach. The
productivity enhancement is achieved by automatic generation of partial sets of
software artifacts such as requirements, design, code and test cases. While tech-
nologically, this has not been accomplished before, the Cougaar Model Driven
Architecture (CMDA) Project endeavors to inspire solutions toward fully autc-
mated generation of software artifacts.

The CMDA system simplifies Cougaar-based application development by
providing two important abstraction layers namely Generic Domain Applica-
tion Model (GDAM) and Generic Cougaar Application Model (GCAM). The
GDAM represents the PIM and encompasses the representation of generic agent
and domain specific components found in the domain workflow. The GCAM
layer, upon which the GDAM layer is built, reflects the PSM or Cougaar archi-
tecture, its specifications and environment. The user specifies the workflow of
the intended Cougaar system using workflow components and the system is then
detailed using GDAM and GCAM models.

CMDA approach uses a combination assembly and transform approaches to
assemble components specified in GDAM and GCAM models and then trans-
form them into intended Cougaar-based systems. The GDAM and GCAM en-

7

gines assemble the respective models and the transform engine parses through
the assembled set of models to produce the actual software artifacts such as
requirements, design, code and test cases.

Fiewe 2 depicts how all the pieces fit together conceptually. The CIM is
realized through the GDAM/PIM, which is realized through the GCAM/PSM.
While this is not a fully implemented MDA approach in every detail, it does
conceptually reflect the key principles.

Fig. 2. Basic CMDA Approach

To a large extend, the CMDA systems capabilities are dependent on the effec-
tiveness and efficiency of the transformation process. The transformer generates
the system requirements by parsing mostly components present in the workflow
layer, as the systems flow of execution and related constraints are described at
that layer. While generating the requirements, the transformer also examines
the components in the GDAM layer. Such examination is warranted due t o the
iduence or tailor&- some GDAM components have on the requirements that
are being generated. W h e r i t should be noted that the requirements, which
are generated automatically, are partial in nature. The low-level design of the
intended Cougaar system is to be elicited from the assembled GCAM compc-
nents. The low-level design encompasses the GCAM model of the system, which
includes (but is not limited to) UML class diagrams, sequence diagrams, state
transition diagrams and deployment diagrams. The code and test cases are gen-
erated and/or assembled from the GCAM model, whose model representation
will be in a suitable representation that provides the required completeness and
correct ness.

2.1 Formal Method Approach Selection

Cougaar is a highly complex system that implements concepts such as “time
phased locality of reference” and “managed inconsistency.” Hence, testing and

8

finding errors using traditional testing methods such as testing for all possible
states or artificially reducing the states by discerning selection, may be grossly
inadequate. In such complex systems, formal methods are the chosen methods to
assure correct operation [ll]. Formal methods, whose underlying basis is math-
ematical notations and techniques, offer capabilities to fully specify the system
using mathematical models. The completeness and correctness of the system is
verified by validating the equivalent mathematical model of the system. How-
ever for most applications, due to time constraints, it is not advisable or even
economically feasible to apply formal methods to fully specify the entire system.
Frequently in real-world projects, formal methods are applied to a small subset
of components that have the necessity for formal treatment [ll].

The transformation processes for the CMDA system encompass significant
challenges. While researchers have conducted transformations before, we are yet
t o come across any example that has attempted to perform transformations to
this scale or depth. While other parts of the system such as mapping between
GCAM and GDAM components are significantly difficult, the transformation is
beset with some interesting challenges. The transformation challenges include:

1. Difficulties arising due to correctness and completeness errors in the input
model,

2. Need for accurate depiction of the complex input model in the generated
software artifacts (verifiability), and

3. Need to provide consistent output when repeated transformations (with same
input) are performed.

These are particularly important for the portions of the CMDA system where
equivalence and rewrite rules are applied. The degree to which these challenges
are not met are proportional t o the degree to which “human in the loop”
will be necessitated. A major decision taken while deciding on the transfor-
mation approach was on adopting the assembly approach or synthesis approach.
Given the complexities involved, it was decided to follow a combined assem-
bly/transformation approach - thereby leveraging the simplicity of assembly ap-
proach and the efficiency of transformation approach. Further, the existence of
many-to-many or at the least many-bone mapping between components in two
different levels makes a purely synthesis approach very difficult and highly error
prone. In particular, the many-to-many mapping relationships between GDAM
and GCAM components could result in a complex and unwieldy system, if syn-
thesis approach or fully automated software artifact generation technique is used.

The following were identified as the key transformation requirements for the
CMDA system.

1. Assembling the systems intended external behavior, specified using the work-

2. Assembling the system design represented using GDAM and GCAM com-

3. Generating code and test cases from the GCAM model by means of assembly

4. Verification and validation of code generated.

flow and GDAM semantics, into English requirement statements,

ponents into system design in UML representation,

approach,

9

3 Formal Methods

Formal methods, a combination of specification language and formal reasoning,
can be classified into three categories: (1) Mainstream formal methods, (2) T h e
orem provers and (3) Customized formal methods. A brief description of the
three categories is given in this section to give a flavor of the decision space
available for the CMDA system.

Mainstream formal methods use rigorous mathematical models to specify the
system. The foundations for mainstream models are usually based on set t h e
oxy and first order predicate calculus. Examples of mainstream formal methods
capabilities include 2, B, CSP, VDM, RAISE.

Theorem provers use rigorous mathematical proofs to describe software SYS-

tems. Examples theorem provers include Nqthm, PVS, OBJ, and Isabelle. While
theorem provers can be very effective, they may suffer poor usability unintuitive
development environments and graphical user interfaces. Further, development
of systems using theorem provers can be difficult.

Custom formal methods are essentially extensions and adaptations of main-
stream formal methods and theorem provers. Examples of these include VDM++,
Temporal PetriNets, and Timed CSP. Formal methods are extended to support
speciiic development paradigm such as object-oriented systems. Hybrid formal
methods, a type of custom formal methods, are formed by combining two or
more m e r e n t types of formal methods.

3.1 Formal Methods in Tkansformation

The capabilities of the formal methods were understood by conducting an in-
depth survey on some of the important formal methods that were used for spec-
ifying agent-based systems. Table 1 depicts the representative formal methods
surveyed based on their Object-Oriented (00) modeling support, usability, tool
support and concurrency support. The rows of the table lists the different formal
methods that were surveyed ranked in the increasing order of preference for the
CMDA system. The columns of the table indicate the comparison criteria with
decreasing order of importance (as far as CMDA system is concerned) as one
move from left to right. The criteria were selected keeping in mind the t r ans
formation requirements, which necessitate representation notations that have
adequate support for representing components and their constraints, scalabil-
ity to represent large and complex systems and tool support for the assembly
approach.

The support for representing objects is the most important selection crite-
rion as Cougaar is an object-oriented system. The 00 support criterion includes
ability to represent objects and their constraints such as preconditions and post-
conditions. The tool support is another important criterion for selection since
CMDA is to be intertaced wth eciipse D E piatform. Tue iod support s h d d
include GUI interfaces to perform consistency checks, type checking and code
generation. The usability criterion gives an indication on the amount of difE-
culty in learning and using the formal method, with a good rate indicating that

10

the methods syntax are similar to popular programming languages and easy to
learn. The scalability criterion is the fourth important criterion that indicates
whether the representation is scalable enough to support complex Cougaar sys-
tems. Formal basis criterion, the least important one, provides insights into the
richness of the formal methods to describe the system completely and correctly.

Table 1. Comparison of Candidate Formal Methods [I21

I Name 1\00 Support! Tool Support (UsabilibylScalablelConcurrency) Formal Basis I

As indicated in the Table 1, among formal methods, VDM++ appears to
possess all of the important characteristics required by CMDA system. Some of
the other prospective formal methods include CSP and Petri Nets. While CSP
does support 00 representations and has good tool support, the usability of
CSP method is only average. As for Petri Nets, scalability of Petri net models is
a major issue. Although VDM++ satisfies the criteria requirements of CMDA
system, the time constraints imposed by the project schedule might not permit
complete formalization of Cougaar system. Hence, the most apt implementa-
tion approach for CMDA system might be to combine the UML and VDM++
methods to exploit the advantages of both methods.

3.2 Vienna Development Method (VDM)

The Vienna Development Method [13] is a notation and set of techniques for
formally specifying object-oriented systems (with concurrent and real-time be-
havior) including modeling the systems, analyzing those models and progressing
t o detailed design and coding. VDM has its origins in the work of the IBM
Vienna Laboratory in the mid-1970s. VDM, one of the most popular and fre-
quently used formal methods, is also one of the few that has IS0 Standards for
its specification language - VDM-SL, Meta-IV [14]. VDM++ is an extension of
the VDM which support object oriented modeling. In this subsection, we outline
VDM++ details on performance against the criteria for selection.

Advantages
The advantages of using VDM++ for this project include:
Usability: One key hindrance in using formal methods is the lack of support

for programming language like semantics. VDM++ provides a programming
language like semantics, thereby enhancing the usability of the method among

11

developers. Further, VDM++ can be used in varying depths from specifying the
requirements more correctly and completely, and to develop models for analysis
and for implementing the system.

Appbicubility: Unlike most formal methods that evolved from academic world,
VDM method was developed by the industry for solving real world problems.
Hence VDM and its extension, VDM++, are used extensively and successfully
to solve industrial problems.

00 ModeEzng.Support: VDM++ is designed with 00 modeling in mind.
Hence the language can be used to model object oriented system, like Cougaar,
without any modifications. The language also supports multiple inheritance and
provides mechanisms to speclfy constraints on data and operations. The support
for 00 modeling is one of the biggest advantages for using VDM++.

Tool Support: VDM has extensive tool support. The class of tools available
for VDM includes (1) VDM through Picture (VtP) by DE: to input/edit formal
specifications, t o specify requirements using pictures or graphics (2) SpecBox:
to print formal specifications captured automatically, to check specifications for
grammatical correctness and for specifications completeness (3) Delft VDM SL:
to check specifications for grammatical correctness and for specifications com-
pleteness (4) mural for proof support, (5) VDM domain Compiler-for automated
code generation and (6) transformation tools for converting UML models to
VDM and vice versa [15,16]. Further, IFAD VDM++ Toolbox is a set of tools
designed t o support VDM++. The toolbox provides a number of features that
include checker to validate syntax and type, test coverage and statistics too€,
and C++, Java code generators. Further, the toolbox provides APIs that allow
programs to access and modify the running instance of VDM++ modeIs inside
the toolbox. This helps easier interfacing with the Eclipse DE.

Disadvantages
Mathematical Foundation: VDM++ is based on mathematical notations.

Therefore, many domain experts and system developers may not like t o encode
system specifkations using VDM++ language semantics. The disadvantage can
be mitigated by developing wrappers that will hide the complexity of VDM++
semantics.

Time Constraints: Even for formal methods experts, large system develop-
ment with VDM++ would be a lengthy endeavor. The modeling of GCAM
components in VDM++ will be time consuming h d difJicult. Hence, modeling
the entire Cougaar system using VDM++ has to be avoided.

3.3 VDM++ Toolbox and CMDA

The VDM++ Toolbox, developed by IFAD, is a set of tools that supports the
objeckriected VnM++ P ~ ~ P E ~ O E cf VnM-SL The toolbox, which is part of
the VDMTools, differs from most other CASE tools for formal methods in the
way the functional aspects of a specification are analyzed. Some of the features of
the VDMTools are Specification Manager, Pretty Printer, Syntax Checker, Test

12

Coverage and Statistics Tool, Type Checker, Dependency Browser, Interpreter
and Debugger, Dynamic Link Facility, Couplings to Third-party Tools, and Java
Code Generator

The features of the VDM Tools planned to be used for the CMDA system
include Rose-VDM++ link to convert'UML into VDM++, VDM++ to Java
code generator, Syntax and Type checker and Test Coverage and Statistics Tool.

In the next section, we discuss the use of VDM++ and UML in the CMDA
approach emphasizing the transformation implications.

4 CMDA Transformation Approach

The transformation challenges detailed above entails using multiple representa-
tions to represent the CDMA system components. The representation that we
believe, best addresses the challenges is a combination of UML and VDM++.
The CMDA project intends to build a developer environment that will offer
developers components, which can be aggregated to represent the system in
workflow, GDAM and GCAM levels. Each of the components named as Work-
flow Beans, GDAM Beans and Cougaar Beans respectively (in synonym with
Java beans concept) will contain sections of software artifacts and related infor-
mation pertaining to that bean. Some example sections of the software artifacts
that beans contain include:

1. Requirements model from which the transformer gleans the partial set of
requirements,

2. Design model from which the systems design model is assembled by the
transformer,

3. References to the lower level beans or links to Java code which can implement
the bean. These references are traversed by the transformer while assembling
the systems code and

4. Test case fragments that contain information on how t o assembly the unit
test cases for the beans.

Further, the bean contains documentation information such as description
about the bean, and constraints pertaining to data, operation and connections
with other beans. The constraints may be divided into two groups: (1) Port
constraints, detailing constraints on input ports of the bean, and (2) Role con-
straints, detailing the restrictions the bean has on the roles or services the bean
provides or supports.

The contents and size of the sections and information in a bean are influenced
by the abstract layer to which the bean belongs. For example, a GDAM beans
requirement section will be larger than the requirement section of the Cougaar
bean, while the code section of a GDAM bean might be pointer to the Cougaar
beans or code that can implement the GDAM bean in Cougaar. The models
in the design model section of each bean will be represented using UML while
the VDM++ representation will be used to delineating connector and other
constraint information. The code section will contain links t o Java code libraries

13

at GCAM level and pointers t o lower levels in rest of the abstraction layers.
The requirements might be a combination of XPDL, text and UML diagram
while the constraints also contain mapping (or connection) information that are
mostly rule based with some formalizations applied.

The workflow of the CMDA system starts with developer assembling the
system by picking the right workflow bean components and connecting them to
represent the workflow. The constraints pertaining to connection are encoded in
the beans and developers are shown a detailed error mesage when they t ry to
connect two dissimilar components. Once the workflow of the system is build, it
could be verified for consistency. The developer is then shown a list of GDAM
beans that can be chosen to map a particular workflow bean. The expert system
will list only related GDAM beans based on the constraints specified by the
developer at the workflow level. The rationale to allow developers chose the
right component is to allow developers make design decisions with the system
assisting them (by showing a list of possible solutions and patterns).

The GDAM beans are mapped into Cougaar beans in a similar fashion. In
all layers, as and when required, the developer will input necessary information
to satisfy the completeness and correctness of bean component. The usability
of the system can be improved by developing wrappers that would mask the
semantics complexities of the representation language. Once the models are built,
the transformation engine will traverse through the beans at each level and
generate the software artifacts based on predefined transformation rules.

.

Fig. 3. CMDA System Abstraction Layers

Figure 3 delineates all the abstract layers that lie above the Java code. The
GCAM layer, which has the largest number of components. The width of the
boxes represents the extent to which the application can be represented by the

14

layer. The ability to capture and/or implement the intended application’s re-
quirements increases as one progress through the layers, with the Java layer
having the capability to implement all the requirements. The workflow is to be
described using XPDL standard, defined by the WorMow Management Coali-
tion, which provides a formal model for expressing executable processes that
addresses all aspects of enterprise business processes. XPDL was chosen because
the language focuses on issues relevant to the distribution of work and workflow
processes than defining web services as in other standards such as BPML and
BPEL.

The solid arrows moving upwards from the Java layer through the GDAM
layer represent the composition of more concrete components to satisfy the do-
main level abstraction specified by the user. The dashed/transparent arrows
pointing up t o the domain application layer from the other layers depict the al-
ternative components that can be obtained when a suitable GDAM component
is not available. The values on the dashed/transparent arrow indicate the pro-
jected amounts of components from the various alternatives in the development
environment.

5 Conclusions

Software development can be thought of as the evolution of abstract require-
ments into a concrete software system through a series of transformations and
refinements. Even in moderately complex systems, this transformation is often
too involved for fully automated means.

MDA provides a systematic way of capturing details during elaboration and
refinement through the mapping from CIM to PIM, PIM t o PSM and ultimately
rendered as an executable software system. MDA as currently defined appears
to have utility if used in moderation. However, for CMDA, it is not a panacea
by any stretch. It still requires considerable work and strategic application.

Cougaar is complex requiring considerable mappings and transforms. For this
reason, we chose an assembly centric approach with simple formalisms to start.
The CMDA approach has substantial transformation challenges in generating
software artifacts such as requirements, design, code, and test cases automati-
cally. The artifacts are generated from models assembled using components or
beans belonging to two abstract layers namely GDAM (abstracts the domain
and generic agent system) and GCAM (abstracts the Cougaar system). A bean
will contain nuggets of requirement, design, code, test and documentation de-
tails pertaining to that component along with transformation information. The
CDMA system combines assembly approach with transformations in small con-
cept to generate the artifacts.

A comparison study of formal methods was conducted t o identify the suitable
language representation for the GCAM and GDAM components. The selection
criteria for the comparative study included criteria such as object-oriented SUP-

port, usability and tool support. The study concluded that the complexity of the
system, coupled with the need for completeness and correctness compels using a

15

hybrid language representation (combination of UML and VDM++) to achieve
transformations. The transformation en@e will generate the required software
artifacts, from the GDAM and GCAM models assembled by the developers, by
parsing the various sections and portions in the beans.

6 Acknowledgements

This work has been supported, in part, by the DARPA STTR gant “AMIIE
Phase IT - Cougaar Model Driven Architecture Project,” (Cougaar Software,
Inc.) subcontract number CSI-2003-01. We would like to acknowledge the efforts,
ideas, and support that we received from our research team including Todd
Carrico, Sandy Ronston, Tim Tschampel, and H. L a y Singh.

References
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Russell, S., Korvig, P.: Artificial Intelligence: A Modem Approach. Second edn.
Pearson Education, Inc., Upper Saddle River, New Jersey (2003)
Dogac, A., Cingil, I.: Agent technology. In: B2B eCommerce Technology: Frame-
works, Standards and Emerging Issues. Addison-Wesley (2004)

http://www.grasshopper.de.

http://www. agent-software.com.

(Cougaar) Open Source Project (2004) http://www.cougaar.com.
- : Java agent development framework (JADE). JADE Board (2004)
http://jade.tilab.com.
-: The foundation for intelligent physical agents (fipa). FIPA Secretariat (2004)
http://www.fipa.org/resources/livesystems. html.
-: Cougaar architecture document. Technical report, BBN Technologies (2004)
Version for Cougaar 11.2.
-: Cougaar developers guide. Technical report, BBN Technologies (2004) Version
for Cougaar 11.2.
Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley Publishing Co. (1998)
Dorhnan, M., Thayer, R.: A Review of Formal Methods. Computer Society Press

Rouff, C., Vanderbilt, A., Truszkowski, W., Rash, J., Hinchey, M.: Verification of
nasa emergent systems. In: Proceedings of the Ninth IEEE International Confer-
ence on Engineering Complex Computer Systems, Florence, Italy (2004)

http://www.csr.ncl.acuk/vdm/.
Plat, N., Gorm-Larsen, P.: An overview of the ISO/VDM-SL standard. ACM
SIGPLAN Notices (1992)
McGibbon, T.: Techni-
cal report, nata Rr: Analysis C!nter for Software. Rome. NY 13441-4909 (1997)
http://www.dacs.dtic.mil/techs/2fmet hods/title.shtml.

http://shinsahara.com/www/vdm/NewsLetter/issue5.doc.

_. ~ Grasshopper 2: The agent platform. IKV++ Technologies ACT (2004)

Agent oriented software. The Agent Oriented Software Group (2004)

_. . Cognitive agent architecture (Cougaar). Cognitive Agent Architecture

_. .

(1996)

_. . Information on VDM. The Center for Software Reliability (2004)

A n analysis of two formal methods: VDM and Z.

- The toolbox newsletter. IFAD (2000)

